Package: LKT 1.7.0
LKT: Logistic Knowledge Tracing
Computes Logistic Knowledge Tracing ('LKT') which is a general method for tracking human learning in an educational software system. Please see Pavlik, Eglington, and Harrel-Williams (2021) <https://ieeexplore.ieee.org/document/9616435>. 'LKT' is a method to compute features of student data that are used as predictors of subsequent performance. 'LKT' allows great flexibility in the choice of predictive components and features computed for these predictive components. The system is built on top of 'LiblineaR', which enables extremely fast solutions compared to base glm() in R.
Authors:
LKT_1.7.0.tar.gz
LKT_1.7.0.zip(r-4.5)LKT_1.7.0.zip(r-4.4)LKT_1.7.0.zip(r-4.3)
LKT_1.7.0.tgz(r-4.4-any)LKT_1.7.0.tgz(r-4.3-any)
LKT_1.7.0.tar.gz(r-4.5-noble)LKT_1.7.0.tar.gz(r-4.4-noble)
LKT_1.7.0.tgz(r-4.4-emscripten)LKT_1.7.0.tgz(r-4.3-emscripten)
LKT.pdf |LKT.html✨
LKT/json (API)
NEWS
# Install 'LKT' in R: |
install.packages('LKT', repos = c('https://optimal-learning-lab.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/optimal-learning-lab/lkt/issues
- largerawsample - Trial sequences for practice participants.
- samplelkt - Trial sequences for practice participants.
Last updated 5 months agofrom:44a46639a5. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win | OK | Nov 12 2024 |
R-4.5-linux | OK | Nov 12 2024 |
R-4.4-win | OK | Nov 12 2024 |
R-4.4-mac | OK | Nov 12 2024 |
R-4.3-win | OK | Nov 12 2024 |
R-4.3-mac | OK | Nov 12 2024 |
Exports:buildLKTModelcomputefeaturescomputeSpacingPredictorscountOutcomeoldLASSOLKTDataLASSOLKTModelLKTLKT_HDIpredict_lktsmallSetViewExcel
Dependencies:bootclustercodetoolscrayondata.tableforeachglmnetglmnetUtilsHDIntervaliteratorslatticeLiblineaRlme4MASSMatrixminqanlmenloptrplyrpROCRcppRcppEigenshapeSparseMsurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
buildLKTModel | buildLKTModel |
computefeatures | computefeatures |
computeSpacingPredictors | computeSpacingPredictors |
countOutcome | countOutcomeold |
Trial sequences for practice participants. | largerawsample |
LASSOLKTData | LASSOLKTData |
LASSOLKTModel | LASSOLKTModel |
LKT | LKT |
LKT_HDI | LKT_HDI |
Predict for LKT Models | predict_lkt |
Trial sequences for practice participants. | samplelkt |
smallSet | smallSet |
ViewExcel | ViewExcel |